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Abstract. We propose a novel formalism to calculate the positronannihilationcharacteristics 
in solidsin which the positron-electron product (PEP) wavefunction isobtained directly from 
a wave equation. From this PEP equation it is easy to see that the most structure-dependent 
term. the Coulombpotential, present in the individualelectron and positronwaveequations 
iscancelled exactly. The remainingpotential isa considerably smoother and weaker function 
than the Coulomb potential. In a qualitative analysis, one can then easily explain some 
typical but apparently paradoxical features in earlier treatments. As an illustration of the 
PEP formalism we have calculated the hulk angular correlation distribution of a positron 
annihilating in AI metal. Within the new formalism the eifect of the crystalline potential 
(symmetry) and of the many-body interaction on the angular correlation distribution can be 
calculated in a phenomenological way. The results are in  goodagreement withexperiments, 
even as regards the finer details. and compare well with rhe conventional formalism. The 
advantages and shortcomings of the new formalism are discussed 

1. Introduction 

In recent years, both the theory and the experiment of the angular distribution of 
electron-positron annihilation (i.e. angular correlation of annihilation radiation, ACAR) 
have made considerable progress [l], The higher precision achieved in the experiments 
makes it possible to compare them with detailed theoretical calculations. It is a well 
known fact that the positron disturbs the electronic structure near the region where the 
annihilation takes place. However, without a proper correction due to the positron- 
electron many-body enhancement, this effect is difficult to treat properly in the tra- 
ditional way to calculate the ACAR distribution, in which the electron and positron 
wavefunctions are solved separately. Owing to the small mass of the positron and the 
extreme imbalance between the number of electrons (loz3) and the single positron, the 
effective density of the delocalized positron will be nearly zero, which gives rise to the 
fact that in the theoretical treatment the electronic structure is left unchanged even in 
the presence of the positron. This difficulty will to some exlent be removed by a proper 
treatment of the many-body effect. In situations where the positron is localized in 
space when the annihilation takes place, the treatment of the deformation of the local 
electronic structure due to the positron can be studied more easily, and good agreement 
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between the theoretical and experimental results has been obtained [ 24 ] .  In the case 
of a delocalized positron, the self-consistent scheme [5] for the whole system containing 
all electrons and one positron suffers from the inability to deal with an infinitely small 
density of the delocalized positron. Thus the electronic structure is kept unperturbed 
even in the presence of the positron and the treatment of the many-electron and one- 
positron system is, in fact. broken down into a separate calculation of the positron and 
a self-consistent treatment of the electrons. 

In order to include the effect of the positron-electron many-body interaction, a lot 
of effort has been expended over the years through the treatment of the so-called 
enhancement or de-enhancement factor for the jellium model [6-91. It has become well 
established how to incorporate the many-body enhancement or de-enhancement factor 
into the calculation of the angular correlation distribution. Nevertheless, owing to the 
various approximations used in calculating the electron and positron wavefunctions and 
the difficulty of calculating the enhancement or de-enhancement in a band-structure 
calculation. it  sometimes seems difficult to decide upon which enhancement factor is 
more appropriate than others [IO]. In some cases this is done in a phenomenological 
way, i.e. adjusting the enhancement factor with several parameters to fit the experiment 
[lo]. Therefore calculations that treat the electron and positron wavefunctions sep- 
arately sometimes give rise to difficulties in the understanding of the experimental 
results. An example is the case of the bulk ACAR for a simple metal. The experimental 
long-slit ACAR ofan AI single crystal is well represented by a free-electron parabola 111, 
121. except for some extended bulges, which do not fit the parabolic form. These have 
been attributed to electron-positron many-body effects [6. 71. The earlier success in 
explaining the ACAR results for simple metals suggested that the positron wavefunction 
is nearly constant and that the electron wavefunctions are essentially free plane waves. 
I t  is also a well known fact that the energy band structure of the simple metals can be 
obtained from electron pseudo-wavefunctions. The pseudo-wavefunction is similar to a 
free plane wave and is only weakly perturbed by the crystal potential. However, the true 
electron wavefunction contains strongoscilations in the atomiccore regions. In addition 
the true positron wavefunction is also affected by a strong crystal potential in the core 
region. Thus there is an apparent paradox: the true electron and positron wavefunctions 
would seem to predict much more structure in the ACAR distribution than is found 
experimentally. 

The second observation is that the ACAR for a positron localized at a defect in one or 
more dimensions so far as always been found to be narrower than that for the bulk 
positron state. For example, ACAR from a positron in a vacancy or a void is narrower 
than that from the bulk [3,4,13,14]. I n  the earlier treatments. which were based on the 
jellium model [13,14] and supercell model [3,4], the narrowing has been explained for 
the vacancy and void cases. Recently. a surface potential model 115,161 has been used 
to explain the unexpected. nearly isotropic and narrowed experimental ACAR for the AI 
and Cu surfaces [17, 181. In the case of a positron in an atomic bubble in a metal, the 
experimental A C A R ~ ~  again found to be narrower than for the bulk [19]. These narrower 
ACAR results could be well explained by detailed calculations based on the traditional 
formalism. However, it is not easy to formulate a simple physical picture for the nar- 
rowing effect, especially not its systematics. 

In this paper we propose a new, simple formalism to calculate the positron annihil- 
ation characteristics such as the angular correlation distribution and the positron 
lifetime. Instead of solving the electron and positron wavefunctions separately, we 
directly calculate the positron-electron product wavefunction. In this formalism, the 
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electron-positron interaction and the many-body interaction are included in the cal- 
culation of the positron-electron product wavefunction through a phenomenological 
total effective potential. We show that one thereby can easily and systematically explain 
the qualitative features of the annihilation characteristics. As a prototype we use AI and 
calculate the bulk angular correlation distribution. We find that we can account for most 
of the small extended bulges found experimentally by means of a phenomenological 
total effective potential for the positron-electron product wavefunction that includes 
the effective electron-electron and electron-positron many-body interaction. 

2. Theoretical formalism 

Usually positron annihilation characteristics are calculated by means of a formalism in 
which the electron and positron wavefunctions are solved separately [ 3 , S ,  111, i.e. the 
electron wavefunctions Viin a crystal are obtained from the Kohn-Sham equations (with 
h = e2/2 = 2m = 1) 

-V2Y,  + VeVi = E2Vl (1) 
where V, = Vc + V, + Ve~c,,rr[n(r), n*(r)]. Here Vc, V,, and V,,,,,, are the Coulomb 
potential and exchange-correlation potential and the electron-positron correlation 
potential, respectively; E,, n(r) and n'(r) are the energy eigenvalue for the electron, the 
electron density and the positron density, respectively. In the case of a fully delocalized 
positron, n+ is equal to 1/V where Vis the volume of the experimental sample. Owing 
to the infinitely small value of the positron density, V,.,,, will be equal to zero or a 
constant, which can be omitted as has been done in almost every calculation of the bulk 
ACAR. For the same reason, the contribution to the Coulomb potential from the positron 
isalsoomittedin the perfectcrystal. Thusthe electronicstructure will be kept unchanged 
even in the presence of a positron. This difficulty can to a large extent be avoided in the 
case of a defect crystal, in which the positron density in the defect may be comparable 
to the electron density, such as in a vacancy or divacancy [3,4]. 

The corresponding positron wavefunction y+ obeys tbe equation 

- V 2 Y t  + V + V +  = E + V +  (2) 
where V, = -Vc + V,,,. Here V,,,, is the positron-electron correlation potential and 
Et is the positron energy eigenvalue. The momentum distribution p*Y(p) of the annihil- 
ating positron-electron pair is calculated within the independent-particle model (IPM) 

[I11 
2 ow 

p2'(p) = const l / d rexp( - ip . r )~ )+( r )q t , ( r ) l  (3) 

where p is the total momentum of 2y photons, and the summation is over all occupied 
electron states. 

The various approximations used in the traditional way to treat equations (1) and 
(2) can give rise to difficulties in the Fourier transformation of equation (3). In fact, 
these might even produce spurious oscillations in p2Y(p). 

We propose a novel formalism to calculate the positron annihilation characteristics. 
Rather than solving equations (1) and (2) individually and with a very high precision, 
we obtain the positron-electron product (PEP) wavefunction yiV+ directly. From 
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equations (1) and (2). one easily sees that the PEP wavefunction obeys the following 
equation: 

(4) 
- W V ; V + )  + U*(VJ ,V+)  = (E+ + E ; ) ( V , V + )  

U* =2(Wi.Vy,+)l( tY, ly+)+ v x c +  vmrr+ V,.C",'+ V". 
Above, U' plays the rote of a total effective potential for the positron-electron product 
wavefunction. The potential Vu consists of two parts. One part comes from the very 
small difference between the Coulomb potentials for the electron and for the positron, 
which so far has been neglected in AcARcalculations [20]. The other part is the difference 
between the true and the employed interaction [20]. From equation (4) we find that the 
strong and most structure-dependent term V ,  is cancelled exactly except for the very 
small difference between the Coulomb potentials for the electron and for the positron 
[IO]. The remaining terms V,,, V,,,,, Vu and V,.,,, are smooth functions. The term 
Vqj, .  '?VI+ can be estimated from the calculation of Stroud et a1 [21]. in which electron 
and positron pseudo-wavefunctions similar to the pseudo-wavefunctions in [22] were 
used. From the results in [22] for AI. we know that more than 90% of the positron 
wavefunction is a constant and therefore the gradient term will not have strong oscil- 
lations outside of the core region in simple metals. From~a comparison between the 
ACAR of the positron annihilation and the recent high-resolution Compton profiles for 
AI and Si [23,24]. one can clearly see that the high-momentum part of the Compton 
profiles is much more pronounced than the corresponding angular correlation curve for 
the positron annihilation. This suggests that the effective potential in the PEP equation 
is weaker than the effective potential for the electron. This is consistent with our 
expectations based on the cancellation of the strong Coulomb potential. It is also known 
that the electronic structure of the valence and conduction bands in simple metals and 
some semiconductors is well represented by pseudopotential calculations. Thus the total 
effective potential U* isweaker than theelectron pseudopotentialorat leastofthesame 
order. Taking advantage of the similarity between the PEPequation in momentum space 
and the pseudopotential formalism for the electron, we can calculate the positron- 
electron product wavcfunction directly from the momentum space through a few 
phenomenological potential parameters. In this way, we can avoid the difficulty that, at 
present, we do not know the exact form of the electron-electron and electron-positron 
many-body interaction. The drawbacks of this scheme are the same as for the empirical 
pseudopotential formalism for the electrons. such as: detailed information of the many- 
hody interaction is lost in the potential parameters and at the present stage the potential 
parameterscan only be obtained from a fittingtoexperiments. Nevertheless, thisscheme 
has the important advantage that the electron-positron interaction can be dealt with in 
the calculation of the PEP, which has not been included in the traditional way to calculate 
the electron wavefunction owing to the nearly zero density for a delocalized positron. 
Having obtained the PEP wavefunction t~; t )+ ,  one can use equation (4) to calculate 
the momentum distribution p'Y@). The positron lifetime r (i.e. the inverse of the 
annihilation rate A )  is. within the local density approximation (251. 

"CC 

l k = A = l l  dr r ly ,+( r ) l*n( r )=  1.1 dr rx ly+( r ) ?p i ( r )12  i (5) 
- x  

where n(,r) is the electron density. The enhancement factor r_ which will be discussed in 
detail elsewhere, can be approximated as (261 

r = (& + 134) x 109 S K I ,  (6) 
Thus r depends only on the average electron density no. 
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In a qualitative analysis, one can now easily resolve the mentioned apparent para- 
doxes. Although, individually, both the electron and the positron wavefunctions are 
strongly affected by the crystal potential, the positron-electron product wavefunction 
is much less influenced. Therefore, in the case of a bulk positron annihilation process 
for a simple metal, one obtains an angular correlation distribution that is similar to the 
free-electron behaviour. In the case of a localized positron, the product form will also 
lead to a narrower angular distribution than for a delocalized case. 

Thepotential U* isinfact likely tobeeven weakerthantheelectron pseudopotential. 
This can be understood qualitatively from the fact that the positron-electron pair 
behaves like a neutral quasiparticle. It is the weakness of U* that gives rise to the nearly 
parabolic shape with some extended bulges (also observed experimentally) and at the 
same time does not produce the erroneous extra structure in the angular correlation 
distribution sometimes found from traditional calculations. This will bediscussed further 
in section 3. 

As one can see from equations (3) and ( 5 ) ,  the positron annihilation characteristics 
depend only on the Fourier transform of the product I&)+. Therefore it is natural to 
solve the PEP equation in reciprocal space. In the following we denote 

ye&) = v i (rM+(r) .  (7) 

In reciprocal space Yep,li and the total effective potential U* for the positron-electron 
product wavefunction Yep,, can be expanded as 

where k is the real crystal momentum in the extended zone scheme and U is the volume 
of the primitive cell. The sum in equation (8) is over all reciprocal lattice vectors. The 
coefficients &(k) and the energy Ex,  which is equal to the sum of E ,  and Ei, are 
determined by the following set of equations: 

d l  

[ ( k  - C)' - E]C_G(k) + 2 UG-GC_G(k) 0. (9) 
c' 

Here we should emphasize that so far no additional approximations have been 
introduced in the PEP formalism. All approximations used up to equation (9), such as 
local-density approximation (LDA) and independent-particle approximation (IPA), are 
used in the traditional formalism and most of the electron energy band calculation 
formalism. All the terms of U* including the gradient product term in equation (4) 
are transformed into U, through equation (8) without any further approximation. In 
principle there are no constraints on any of the terms contributing to U*. The only 
practical constraint is the limitation of the computer resources, which may appear when 
U* is a strong potential because then a large number of reciprocal lattice vectors are 
needed in the calculation. 
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The square of the Fourier transform of Y,,,, is defined as Q(p), where 
2 111 

WP) = I 1 drexp(-ip r)YC,&) 1 ’  = I C-,(k)G(k - p - C )  1 
C 

Before calculating the ACAR, we would like to discuss the normalization constant. It 
is known that the Schrodinger equation itself does not give the normalization constant 
of the wavefunction. Instead the normalization constant is imposed by the famous 
probability interpretation. In the present phenomenological PEP formalism, one also 
needs an assumption about the normalization constant of the PEP. As discussed above, 
itisplausible that foramaterial withonlysandpelectronsin thevalence andconduction 
bands, such as simple metals and some semiconductors, the normalization constant will 
only be weakly dependent on the state of PEP. We assume that, for a crystal with only s 
andpeiectronsin itsvalenceand conduction bands, the normalizationconstant Cnorm(Ek) 
for Ycp,k is only weakly dependent on the total energy corresponding to Yep,k and can 
be approximately given by 

where CY is a small constant that can be determined from experiment and g ( E k )  is a 
smooth function of Ek. The normalization constant might be approximately determined 
by a separate conventional calculation, assuming that the normalization constant of the 
posi tron-electron product wavefunction is unchanged from the conventional formalism 
to the PEP formalism. This will be discussed further elsewhere. At present the validity 
of the assumption can only be judged from the comparison between the calculated 
results and experiments. From our present results for AI and our ongoing work on Si 
[?7], this assumption is found to be reasonable. In our calculations we therefore have 
simplified even further and used cu=O and removed CnOrm(O) from the ACAR calculation. 

Cnorm(EJ = Cnom(0) [1 + 4EJ1 (11) 

Then the angular correlation distribution p2Y(p) can be obtained as 
1111 all 

P 2 W  = Em,) E IC-C(k)l26(k - P  - G) 
f(G) = l/{exp[(Ek - P)/~BZI + U  

(12) 

(13) 
k G 

wheref(Ek) is the Fermi-Dirac distribution and p the chemical potential. The order of 
summation in equation (12) can be interchanged to obtain 

811 

P 2 ’ W  = xff(E,+G)/C-c(P + G)I2. (14) 
G 

The ZD angular correlation I ( p r ,  p v )  is given by 

4Px3PJ = /P”(P)dP, (15) 

and the I D  distributionsf@,) and Q) are 

(16) 
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We now discuss the calculated p2Q) for three cases, i.e. (i) U* = 0, (ii) U* is weak 

f ( E p r C )  = - E p + G )  (18) 
where EF is the Fermi energy and 6' the usual step function, and we immediately obtain 

P 2 W  = W F  - EP+d (19) 
and the ZD angular correlation Io (pX,py )  simplifies to 

(20) 

IO@*) = d E F - p : ) .  (21) 

and (iii) U* is not weak. For the case (i) U* = 0 and T = 0 I<, then 

2 - 2 I / Z  
I O b x r P y )  = 2 ( E F - p r  Py) 

The ID angular correlation distribution I&) is then of the well known parabolic form 

For non-zero temperatures, we use the Fermi-Dirac distribution for B(EF - E p + c )  in 
equation (19) but we also have to consider other important temperature effects as well, 
such as the effective mass of the positron and the thermal expansion of the lattice 
constanta. Themetals thatcan berelativelywelldescribedbythisapproximationinclude 
the alkalis, alkaline earths and aluminium [ll, 28, 291. Except for the small extended 
bulges, equation (21) accounts well for the experimental data. 

In the case (ii), i.e. U* weak, the rapid convergence of the sum in equation (14) 
means that it is only necessary to take into account the shortest reciprocal latticevectors. 
For example, in FCC aluminium crystal, one [O,O, 01, eight {%I,  21, 21} vectors (all 
permutations of signs) and six {&2,0,0} vectors (all permutations) are needed. Thus 
only four potential parameters are required, i.e. U,, , ,  U,,, U,, and U,,,, and we will 
set U3,,  = U,, = 0 because they become important only in the high-momentum region. 
The so calculated IQx) is close to a parabola but with some small bulges originating from 
the region where the Bragg plane intersects the Fermi surface. This will be discussed in 
detail in section 3. 

Forthecase@) U*isnot weak,manyGvectorshave tobeincludedinthesummation 
in equations (8) and (9). Among s,p-bonded materials the strongest U' is expected for 
insulators. This will be discused elsewhere. 

3. Results and discussion 

We will ROW use AI to test the present new formalism to calculate the angular correlation 
distribution. Since a lot of work has been done for this material and good agreement has 
been obtained between the theoretical and experimental results [3-5,11,12,30,31], we 
will concentrate our attention on the fine structure, the anisotropic small bulge of the 
angular correlation distribution. The big isotropic bulge has been successfully explained 
using the many-body enhancement factor (see [3-5, 11, 12, 30, 311) and we will not 
attempt to repeat this here. Our purpose is instead to test the PEP formalism and see 
whether or not it can give a good account of the experiments and also to compare it with 
the results of various conventional methods. 

For A1 metal we use only two parameters, U,,, and U,*. A comparison between the 
Compton profile and ACAR of AI shows that the two curves are quite similar to each 
other. As argued above, this suggests that the electron pseudopotential parameters 
would be most reasonable as starting values for the potential parameters of PEP. There- 
fore, for U,,, and U,,, we first choose the electronic parameters from [32], and thereafter 
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e(mrad) 

Figure 1. The two-dimensional angular correlation distribution along the Al[lOO] direction 
withp? = O.The FuUcurvereprcsentsrhecalculatedI@,. p, = O),thedottedcurve represents 
thecircleli,(p.,p,=O) = 2(EF.pj)"'withthrpotentialU* =Oandthebrokencurveshowr 
ihediffercncel(p,,p, = 0) - lo@,r,pu = O).Thepotentialparamelersare U , , ,  = 0.0179and 
Llm2 = U.OSf9 Ryd. 

we adjust them somewhat to give a better fit to the experimental results. We expect that 
the absolute values of the final parameters of PEP will be smaller than the electron 
pseudopotential parameters because, asdiscussedabove, U* is likely to be weaker than 
the corresponding electron pseudopotential due to the cancellation of the Coulomb 
potential. 

In figure 1 we show the angular correlation lbx, p, = 0) along the [loo] direction. 
In the calculations we find structures (bulges) aroundp, = 3 and 6 mrad, which all are 
consistent with theexperimental results[l2]. The bigisotropicbulgeofthe experimental 
curve pi = 0) (a deviation from the circle 2(EF -pi)/ ' / '  in the region of 
2.5 mrad < px < 6 mrad) in [I21 has been explained by Berko et a1 [12. 301 based on 
the many-body momentum-dependent enhancement of Carbotte el a1 [7] and also by 
Chakraborty er a1 [3-51 based on the many-body energy-dependent enhancement. The 
experimental I,,@,,p, = 0) can be divided approximately into three parts. The first part 
is the free potential part, i.e. a circle 2(EF - p:)'/*, The second part is a big isotropic 
bulge in the region of 2.5 mrad < px < 6 mrad due to the effect of the electron-positron 
many-body enhancement. The third part isan anisotropicsmall bulge aroundp, = 3 and 
one around 6 m a d .  The second part is well understood through the work in [3-5,12, 
301, but is not present in our theoretical result because we have not included the many- 
body enhancement in our calculation. The reason is that, at this early stage of the PEP 
formalism, we will focus on the anisotropic small bulge, which is more directly related 
to the band-structure-like formalism itself rather than the many-body corrections. 
Therefore we will only consider the first and the third parts of the experimental results 
in the following discussion. 

The calculated structure around pr = 3 mrad is somewhat more pronounced than 
obsemed. This bulge is produced by the region where the Fermi surface intersects 
with the Braggplanes (002). (00-2), (111). (1-11), (11-1) and (1-1-1) both 
individually and mutually. Similarly the bulge aroundp, = 6 mrad originates from the 
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P.(mrad) 

Figure 2. The two-dimensional angular correlation distribution along the AI[IOO] direction 
with p? = 0. The notation is the same as in figure 1. The Dolential parameters are U , , c  = 
0.0170 and U,Kl2 = 0.03934 Ryd. 

regionwhere theFermisurfaceintersectswith theBraggplanes(?00),(111),(1 -ll),  
(1 1-1) and (1 -1 -1) both individually and mutually. It can be shown that the bulge 
produced by the Bragg plane perpendicular to the path of integration (which is the case 
for the bulge aroundp, = 3 mrad) is larger than the bulge produced by the Bragg plane 
parallel to the path of integration (which is the case for the bulge aroundp, = 6 mrad). 
The somewhat too strong effect found in the calculationscan be understood by the fact 
that the Ashcroft pseudopotential parameters used in the calculation are stronger than 
the actual PEP potential parameters. Therefore we reduce the values of the 
parameters U,,, and Uw2 tobecome0.0170and0.03934 Rjd ,  insteadoftheinitialvalues 
0.0179 and 0.0562 Ryd, respectively. The so calculated I(p,,p, = 0) is shown in figure 
2. The bulges now become small, but there is still a minimum in the curve aroundp, = 
3 m a d ,  which is not seen in the experimental data [12]. There might be two reasons for 
this small difference. One is that the limited precision of the experiments might have 
smeared out the line structure. The other is that the experiment was done at 100 K while 
both I(p, ,p,  = 0) in figures 1 and 2 are calculated with T = 0 K. The temperature effect 
could be caused by several different mechanisms [4,29]: (i) a temperature dependence 
of the effective mass of the positron; (ii) the Fermi-Dirac distribution of the electrons; 
(iii) the thermal expansion of the lattice constant a. This last effect of the lattice constant 
can be much reduced by presenting the ACAR as a function of the momentump in units 
of h / a  if the temperature change is small. It is more difficult, however, to include the 
correction for the positron effective mass in the calculation of ACAR. Usually this effect 
is estimated from the tail of the experimental ACAR, but we do not attempt to do it in 
this paper. The main effect of the Fermi-Dirac distribution is a smoothingof the ACAR 
curve, and this effect is hard to distinguish from the broadening due to instrumental 
resolution. The effect of the experimental resolution is usually taken into account by 
convoluting the theoretical curve with a proper experimental resolution function. In 
order clearly to display the small anisotropic bulge, we did not however apply such a 
convolution procedure. 
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11 *11100, 

P, (mrod) 
Figure 3. The one-dimensional angular correlation distribution (integrated over p.) along 
the Allloo] direction. The full curve represents the calculated / ( p , ) ,  the dotted curve 
represenrsrhe parabolal,,(p,) andthe brokencurveshowsthedifference/(p,) - /,,(p,).The 
curve denoted by crosses represents the experiment of [31]. The potential parameters are 
rhesamearin ligure2,i.e. Ulll =0.0170andLrirr=0.03934Ryd. 

Figure 3 displays the calculated one-dimensional angular distribution f(pJ along the 
[ I  001 direction with the new potential parameters. It agrees well with the experimental 
results of (11, 311, both as regards the shape and the small extended bulges around 
px  = 3.3 and 6 mrad and also compares well with the theoretical result of [31] using 
a conventional APW (augmented plane wave) method. The difference between our 
theoretical calculation and the experimental curve [31], i.e. the large bulge from 3.3 to 
5.6 mrad, can be accounted for by the effect of many-body enhancement, as was done 
in 131). ThecomputedI@,) alongthe (1 1 Ildirectionwiththesame parametersisshown 
in figure 4, Again we reproduce the extended bulges aroundp, = 0 and 6 mrad observed 
in the experiments 1111. except that there is a small difference in the bulge around 
px  = 0 mrad. Unlike the calculated distribution, the experiments show an asymmetric 
distribution around zero along thep, direction. Possibly this slightly asymmetric result 
was due to the experimental conditions, which might have had a slightly different 
precision aIong different directions. Nevertheless the experimental results and the 
present calculations are remarkably consistent. For a further comparison the many- 
body enhancement should be included in the calculation and furthermore one needs 
experimentaldataofhigherprecision. Alsosystematicstudiesofthe temperatureeffects 
should be undertaken. 

We would also like to comment on the possible effects of the many-body interaction 
on ACAR. The many-body interaction can be treated in two ways. One is through the 
enhancement factor or de-enhancement factor. The other is through the wavefunction. 
It has beenshown that the many-body effect in the Compton profile isisotropicanddoes 
not affect the anisotropy of the Compton profile 1331. Owing to the similarity between 
the many-body enhancement in the Compton profile and the positron-electron many- 
body energy-dependent enhancement in the angular correlation distribution, it is not 
unreasonable to expect that the many-body effects via the energy-dependent enhance- 
ment factor are more important for the large isotropic bulges (such as in the alkali metals 
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Figure 4. The one-dimensional angular correlation distribution (integrated over p J  along 
the AI [ ]  111 direction. The full curve represents the calculated /(p>), the dotted curve 
represents the parabola / , , ( p x )  and the brokencurveshow thedifference I (pJ  - Io@,). The 
potential parameters are the Same as in figures 2 and 3, i.e. U,,, = 0.0170 and Qra = 
0.03934 Ryd. 

[7] and AI [2-5.30]) than for the small and anisotropic bulges. Using the enhancement 
factor, one has successfully explained the bulges of ACAR curve in the alkali metals [7] 
and the large isotropic bulge in AI [3-5, 301. This is consistent with the fact that the 
enhancement factor was obtained from the jellium model, which in itself is isotropic and 
in agreement with the conclusion of [30]. In contrast to the many-body effect via the 
energy-dependent enhancement factor, the many-body effect through the wavefunction 
together with the remaining potential is more directly responsible for the anisotropic 
bulges of ACAR. It is understood that two wavefunctions differing by one reciprocal 
lattice G will be strongly correlated. Thus the change of the total effective C/c due to the 
electron-positron interaction and many-body interaction is likely to have an appreciable 
effect on the wavefunction near the Bragg plane, especially when it coincides with the 
Fermi edge. As already discussed, the presence of the positron has no influence on the 
electron wavefunction for bulk ACAR calculations using the conventional formalism. 
Therefore the anisotropic bulge could sometimes not be %,ell represented by the con- 
ventional method without using a model potential for the electron wavefunction cal- 
culation. However, in the simple metals these anisotropic bulges are sometimes too 
small to be resolved experimentally. Hence it is hard to draw a clear conclusion from 
the experiments on simple metals. In the semiconductor Si one can clearly notice these 
anisotropic many-body effects, something that will be discussed in a separate paper. In 
themetalsCr,Fe andCe, it wasfound that the best agreement between theexperimental 
and theoretical results is obtained by using a a parametrized model potential (instead of 
a self-consistent potential) for the electron wavefunction calculation together with a 
many-body enhancement correction [34, 351. The mechanism behind this anomaly is 
not yet understood. If there is a change of the electron wavefunction induced by the 
positron, this would have an important effect on the angular correlation distribution, 
which might not be corrected by the many-body enhancement alone. 
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Within the present formalism the experimentally small anisotropic bulges are well 
reproduced. Some of the smallest bulges were not present in the results of [5 ] ,  which 
might be due to a smoothing of both the experimental and theoretical curves. Because 
the theoretical as well as the experimental one-dimensional ACAR curve of AI are too 
close to the free-electron parabola, it was not attempted to analyse the isotropic effect 
of the many-body interaction. From the comparison between our calculated results and 
experiments. we do  find that the positron-electron interaction and the many-body 
interaction have appreciable effects on the curves of ACAR in Al. The present PEP 
formalism does include these interactions in a phenomenological way in the calculation 
Of ACAR. 

4. Conclusions 

In summary. we have shown that the present idea, i.e. directly solving the PEP equation, 
gives a new insight into the physics of positron-electron annihilation. In a qualitative 
analysis, it resolves some apparent paradoxes in the earlier treatments. In a quantitative 
calculation, it reproduces the extcnded bulges found experimentally and gives results 
consistent with the experimental findings. Clearly the present simple PEP formalism 
could be refined. It should be relatively easy to incorporate the many-body enhancement 
effect via the enhancement factor into this new formalism and it  might be possible to 
develop a real-space PEP formalism. Before the PEP formalism is applied to a situation 
with a more localized positron, some problems need to be solved. One is the overall 
normalization of the wavefunction and another is the relationship between the potential 
parameters and their dependence on the crystal structure and temperature. This subject 
will be discussed elsewhere. We should emphasize that the PEP formalism a t  present is 
applied as a phenomenological scheme. Without experimental results and the experience 
obtained from calculations using the traditional formalism, it could not have been 
formulated. In the context of defects and materials with d and f electrons. the traditional 
formalism hasof course a great advantage over the present PEP approach. Nevertheless 
it is reasonable to expect that the present PEP approach will be applicable to systems 
where the pseudopotential method is appropriate for the electron energy band cal- 
culation and will give results in agreement both with experiments as well as with the 
conventional formalism. Owing to the simplicity of the PEP formalism, It will be useful 
for understanding the general trends of the experimental ACAR. It might also play some 
role in the reconstruction of the three-dimensional ACAR from the two-dimensional 
ACAR. Further applications of the present PEP formalism are in progress. 
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